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Abstract-Numerical results of a finite difference scheme are presented for the developing combined forced- 
free laminar boundary layer flow in a vertical concentric annulus with a rotating inner cylinder. The effect of 
a superimposed aiding or opposing free convection on the developing tangential velocity profiles is 
investigated for a fluid with Pr = 0.7 in an annulus of radius ratio 0.9 over the ranges of - 300 6 Gr/Re C 
800 and 0.2 < Re’jTa < 10. The effects of a rotating inner cylinder on the hydrodynamic development 
length, critical distance at which the axial velocity gradient normal to the wall vanishes and heat transfer 

parameters are also considered. 

NOM ENCLATTJRE 

annular gap width, (r2 - r,); 

specific heat of fluid at constant pressure; 
hydraulic diameter of annulus, 2b; 
gravitational body force per unit mass; 
Grashof number, g&t, - t,)D3/vZ : 
local heat transfer coefficient based on area of 
heated surface, 

-k; i(f, - t,); 
wall I 

thermal conductivity of fluid; 
number of radial increments in the numerical 
mesh network ; 
annulus radius ratio, r,/r2; 

local Nusselt number, hD/k ; 

pressure of fluid at any point ; 
pressure of fluid at annulus entrance ; 
hydrostatic pressure, + pogz; 
pressure defect at any point, p - pS; 
dimensionless pressure defect at any point, (p’ 

- Po)/Po4i 
Prandtl number, p/k; 

radial coordinate ; 
inner radius; 
outer radius; 
dimensionless radial coordinate, rjrz ; 
Reynolds number, u,D/v ; 
fluid temperature ; 
mixing cup temperature over any cross- 
section, 

fluid temperature at annulus entrance ; 
isothermal temperature of heated wall; 
dimensionless temperature, (t - to)/(:, - t,); 
dimensionless mixing cup temperature, 

(t, - &.t)/(r, - r,); 

Taylor number, 2RZr~b3/v2(r, + r2); 

axial velocity ; 
2 * F-2 

entrance axial velocity, 
s s 

ur dr / 
rs ! ,, rdr; 

dimensionless axial velocity, u/u, ; 
radial velocity ; 
dimensionless radial velocity, or+; 

tangential velocity; 
dimensionless tangential velocity, w/Qr, ; 
axial coordinate ; 
dimensionless axial coordinate, 
2z(1 - N)/r,Re; 

dimensionless hydrodynamic development 
length ; 
dimensionless axial distance at which the 
gradient of the axial velocity component nor- 
mal to the wall vanishes. 

Greek symbols 

volumetric coefficient of thermal expansion ; 
fluid density, po[l - P(t - to)]; 
fluid density at the entrance temperature; 
dynamic viscosity of fluid ; 
kinematic viscosity of fluid, lipo; 
tangential boundary layer displacement thick- 
ness, 

d&ensionIess tangential boundary layer dis- 
placement thickness, 6$b; 

angular velocity of inner cylinder. 

1. INTRODUCTION 

SINCE the famous paper of G. I. Taylor [l], there has 
been increasing interest in knowing the variables 
which control the laminar flow behaviour and the 
onset of hydrodynamic instability in concentric annuli 
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with rotating inner walls. Investigating such a problem 

leads to a basic understanding offluid flow through the 
gap between rotating and stationary machine parts, 
such that in electric motors, journal bearings, chemical 
mixing or drying machinery, gas or oil exploration 
drills etc. 

Few papers in the literature [2X3] have dealt with 
tangentially developing laminar flows and/or tran- 
sition to vorticular motion in the entrance region of 

concentric annuli with rotating inner walls. The main 
aim of these papers was the determination of the axial 

growth of the tangential boundary layer displacement 
thickness 6,. According to the unique stability criteri- 
on available to date for tangentially developing flows 
[2, 31, knowledge of the axial growth of a,, is essential 

to locate the axial position of the point of origin of 
hydrodynamic instability. 

In fact, these entry region investigations have been 
developed under the assumption of temperature- 
independent fluid properties. However, high heating 
or cooling rates may cause significant changes in fluid 

properties and the classical assumption of constant 
physical properties may lead to considerable errors in 

predicting the flow behaviour and both the power 
required to pump the fluid and the heat transfer 
characteristics. 

Of particular interest to the present investigation is 
the variation of fluid density with temperature. A 

change in fluid density causes a change in the gravi- 
tational body force on a volume of the fluid. At low 

Reynolds number gravitational body forces play an 
important role in determining the flow regime. Under 
certain circumstances body forces created under the 
action of temperature-dependent fluid density may 
change a forced laminar flow to the so-called com- 
bined forced-free, or mixed convection laminar flow. 
On the other hand, changes in fluid density resulting 

from the presence of radial temperature gradients, due 
to heating or cooling one or both of the annulus 
boundaries, affect the stability of a Couette flow 
between two rotating concentric cylinders [9]. Also, 
variations with temperature offluid density may create 
distortions affecting the stability of a streamline axial 
flow and cause transition to an unsteady flow at 
Reynolds numbers much lower than those with iso- 
thermal flow [lo]. 

The present study is an attempt to investigate the 
free convection effects on the developing laminar 
upward or downward flow in a vertical annulus with a 

rotating inner cylinder. Two thermal boundary con- 
ditions are considered; namely, case (I) in which the 
inner rotating wall is isotherm?1 while the outer 
stationary wall is adiabatic, and case (0) in which the 
outer wall is isothermal while the inner wall is 
adiabatic. 

2. GOVERNING EQUATIONS 

Assuming steady, axisymmetric, laminar flow of an 
incompressible Newtonian fluid, with no internal heat 

generation, with constant physical properties except 
the density which only varies in the gravitational body 

force term according to the Boussinesq approxi- 
mation, neglecting viscous dissipation and axial con- 
duction of heat, assuming Re >> 0, and applying the 
Prandtl boundary layer assumptions [2], the equa- 
tions governing the combined forced-free fluid motion 
and heat transfer in the entrance region of a vertical 
annulus with a rotating inner cylinder are as follows: 

(1) 

T posCl - B(t - to)1 + F $ ,rg i > ’ (4) 

The minus and plus signs in the gravitational term of 

equation (4) apply respectively to upward and down- 
ward flows, taking into consideration that the body 
force acts in the negative z-direction in case of an 
upward flow and vice versa in case of a downward 
flow. 

Dissociating the pressure into the usual two com- 

ponents, i.e. 

P = P' + P, = P' 7 POSZ~ (6) 

in which the minus and plus signs apply respectively to 
upward and downward flows, equations (2) and (4) can 
be written as follows 

w2 ?p’ 
POT=% (7) 

(8) 

Using the dimensionless parameters given in the 
nomenclature, equations (I), (3), (S), (7) and (8) can be 
replaced by the following dimensionless forms : 

av v au 
-fR+z=oO 
3R 

W2 (1 - N) Re2 SP 
-_= p-3 
R 2(1 + N) Ta ?R 

(9) 



Combined forced-free laminar convection 177 

“E+J!!!=_?p 
dR az az 

ZA 

i? 
T 

Re 4(1 - N)’ 
+i”l+; g (12) 

aR* 

! 
(13) 

The five coupled equations (9)-(13) are subject to 
the following boundary conditions : 

forZ>OandR=N,U=V=O,W=landT=l 
for case (I) or aT/dR = 0 for case (0); 

forZ>OandR= l,U= V= W=OandaT/dR=O 
for case (I) or T = 1 for case (0); 

forZ=OandN<R<l,V=W=T=P=Oand 
u = 1. (14) 

Using the boundary conditions (14), the continuity 
equation (9) can be written in the following integral 
form : 

s 1 

RUdR = $1 - N’). (15) 
N 

It is worth noting that the above mathematical 
model which governs the present mixed convection 
case includes the extra similarity parameter Gr/Re 
beside those similarity parameters describing the 
purely forced convection case [7, 81. 

3. NUMERICAL METHOD OF SOLUTION 

Considering the mesh network of Fig. 1, and by an 
extension of the work of [7], equations (9)-(13) and 
equation (15) can be written in the following finite 
difference forms : 

Vi+l,j+l - I/i,j+l I/i+I.j+l + ‘Ii+, 
AR + 2[N + (i - l/Z;AR] 

+ 
Ui+l.j+I + ui.j+l - ui+l,j - ui.j 

2AZ 
=Ot (16) 

wi.jwi.j+ 1 (1 -N) =--- 
N+(i-l)AR 2(1+N) 

Re2 P,,j+l -P~-I.~+I 
X- 

Tll AR 
’ (17) 

I 

(Inner wall) (outer wall) 

FIG. 1. Mesh network for finite difference representation. 

‘t.j 
ui+l.j+I - ui-l.j+I ui.j+ 1 - ut,j 

2AR + ‘i.j AZ 

Pi j - Pi,j+ 1 Gr Ti.j+ 1 
AZ + % 4(1 - N)’ 

+ 
ui+l.j+l -2ui.j+l + ui-*.j+l 

(AR)’ 

1 
+ ui+l,j+l - ui-l.j+l 

N + (i - l)AR 2AR ’ 
(19) 

“i.j 
Ti+i.j+i - Ti-l.j+l 

+ ui.j 
Ti.j+ I - Ti.j 

2AR AZ 

1 

=-i 

Ti+i.j+i -2Tij+i Ti-i.j+i 
Pr (AR)’ ’ + (AR)’ 

1 
+ Ti+i.j+i - Timi.j+i 

N+(i- l)AR 2AR ’ ! 
(20) 

AR i U,,[N + (i - l)AR] = i(l -N’). (21) 
i=2 

vi,jwi+l.j+l + wi+l.j- wi-l.j- 

4AR 
wi-l.j+l 

+ uij wi.j+ 1 - wi.j 

AZ 

wi+i.j+l + wi+l.j- 2wi.j+l -2Wi,j+ wiml,i+’ + wi-l,j 1 = 
2(AR)’ + N + (i - l)AR 

X 
wi+l.j+l + wi+*.j- wz-l,j- wi-l.j+l wi.j+ L + wi,j (18) 

4AR -2[N+(i-l)AR]’ ’ 
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In the above finite difference equations the variables 
with subscript j + 1 represent the unknowns and those 
with subscript j are knowns. The numerical solution of 
these equations is obtained by first selecting values of 
the parameters Re2JTu, Gr/Rr and Pr. Then, starting 
with j = t (entrance cross-section) and appIying 
equation (18) for i = 2. 3,. . . . n yields (rr - 1) 
simultaneous linear algebraic equations which when 
solved by Thomas’ method [l l] give the unknown 
values of W’s at all points of the second cross-section. 
Similarly, using equation (20) the unknown values of 
T*s at ali points of the second cross-section (j = 2) are 
obtained. Now, applying (17) with i = 2,3, . II I n + t 
and (19) with i = 2,3,. . . , n and (21) to the entire cross- 
section, we get 2n equations which when solved, by 
means of a special form of the Gauss-Jordan elim- 
ination scheme [ 121, give the unknown values of U’s 
and P’s at all points of the second cross-section. Using 
the computed values of U’s and applying (16) we get 
the unknown values of V’s at the grid points of the 
second cross-section. Repeating this procedure, we can 
advance along the annulus until the flow becomes fully 
develooed. 

The numerical solution of the finite difference 
equations (16)-(20) must converge to the exact so- 
lution of the original partial differential equations 
(9)~(13) in the limit when the numerical grid spacings 
tend to zero. To ensure such an essential requirement, 
the finite difference equations must be consistent 
representations of the original differential equations 
(i.e. truncation errors tend to zero as the numerical 
mesh sizes tend to zero) and stable (i.e. round-off errors 
do not grow as the computations proceed in the 
marching direction). Details concerning corlsisten~y 
and stability and theories relating them with con- 
vergence may be found in [12]. 

Following the procedures described in [ 12,151 and 
expanding each term in the finite difference equations 
(16)-(20) by a Taylor series, it could easily be proved 
that the truncation errors, resulting from the approxi- 
mation of each of the differential equations (9)~(13) by 
the finite difference equations (16)-(20), respectively, 
vanish as the mesh sizes tend to zero. This means that 
the finite difference equations (16)~(20) are consistent 
representations of equations @j-(13). 

Also, according to the theories summarized in [12, 
I!+]* the numerical stability can be examined by 
introducing small perturbations (denoted hereinafter 
by u’, V’, w’, P’ and T’) into the finite difference 
equations and checking whether or not such per- 
turbations amplify as the ~orn~utat~on proceeds in 
the marching direction It is noteworthy that the 
finite difference equations are linearized by assuming 
that, where the product of two unknowns (with 
subscript ,j i- 1) occurs, one of them is given 

approximately by its value at the previous axial step 
(with subscript j). This implies that one of these 

unknowns is considered as a constant throu~out an 
axial step. Thus, the coefficient Wi,j on the feft hand 
side of equation (17) and also the coefficients Ui.j and 
V,.j which are multiplied by the finite difference 
representations of the derivatives 8V/aR, Wjc7Z, 
GU/aR, L?U/C?Z, (?T,@R and ?TjaZ on the left hand 
sides of equations (18)-(20) may be regarded as being 
constants throughout an axial step. Therefore, taking 
into account the constancy of such coefficients through- 
out an axial step, the insertion of the new variables 
U+y,Vt-~~,W+W’,P+fYandTfTintothe 
finite difference equations ~16~(20) leads to five other 
equations which are identical in form to the finite 
difference equations (i.e. these resulting five equations 
can be obtained by replacing each variable in the finite 
difference equations, except the previously mentioned 
constant coefficients, by its corresponding pertur- 
bation). These resufting five equations govern the 
~ha~our of the small ~rturbat~ons which represent 
the round-off or similar errors, i.e. they give the 
relationships between the values of such numerical 
errors at a column (e.g. j + 1) and the corresponding 
values of these errors at the previous axial step (i.e. 
column j). Moreover, according to these stability 
theories summarized in [I?, 153, a general term of a 
particular numerical error (i.e. a primed variable) at 
any point (R, Z) is a product of two functions; the first 
of these is an exponential function of Z only which 
represents the amplitude of the error at the particular 
point under consideration while the second is an 
exponential function of R only, containing all the 
existing harmonics. A typical form of this general term 
at any column (say for examplej) isf(Z) e’@, where I 
denotes the square root of - 1, q is any real number 
representing the frequency of any existing harmonic, 
and f(Z) is an exponential function of Z only repre- 
senting the amplitude of the error at that particular 
column. 

Now using such a typical form for all the per- 
turbations, we have U{,j = fr(Z) e’@, V:,j =_&(Z) erqRt 
W& = &(Z) e’@, Pij = &(Z) e’@, and T;.j = .f&Z) 
e’qR, where each fis again an exponentrat function of Z 
only representing the amplitude of the ~rrespondi~g 
~rturbation. Substituting these sinusoidal represen- 
tations of the perturbations in the previously- 
mentioned resulting five equations which govern the 
behaviour of the round-off or similar errors, i.e. 
equations (16)~(20) after replacing each variable by its 
corresponding perturbation, leads to the foflowing five 
simultaneous equations : 
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in which 

Cl = l/(1 - BS), 

c* = (1 - c,)/(U - UBS), 

Gr S(AR)’ 

” = 4(1 - N)*Re 1” 

c,=-1 

C6 = C3C&2? 

2 - S[(AR/Ri)2 - B] 

c7 = 2 + S[(AR/R,)* - II] ’ 

Pr 

” = Pr - S[B + IVAR(1 - Pr)sinqAR]’ 

AZ 
S=------ 

U(AR)*’ 

B=2(cosqAR-1)-I I/AR-g sinqAR. 
(I Ri! 

The above equations can be expressed in the 
following matrix-vector notations 

F(Z + AZ) = GF(Z), 

where F(Z + AZ) and F(Z) are the column vectors 
whose components represent the amplitudes of the 
individual error components corresponding to the 
various dependent variables at (Z + AZ) and Z, 
respectively, while G is a complex matrix of dimension 
5 x 5, known as the amplification matrix. 

Again, according to the theories summarized in [12, 
151, for numerical stability, each eigenvalue of the 
amplification matrix G must not exceed unity in 
modulus. Denoting the five eigenvalues of G by _Y,, 
Ipz, Y3, ,.Yb and _Y,, then we have 

PI = l/(1 - BS), Y2 = 0, 

Y, = Y4 = c-j, 9, = cp 

Denoting the moduli of these eigenvalues by U’,, U;, 
6p;, U4 and -rP; respectively, it can easily be proved 
that 

Y’, = Jl/(l + 4E, + 4.F: + ES), 

L&=0, 

y;=“y>= J 1 - 2E, + E: + (E*/2)* 

1 + 2E, + E: + @l/2)* ’ 

Y; = Jl/[l + (4E,/Pr) + (2EJPr)’ + E:], 

where 

E, = - S(cos qAR - l), 

E, = S( VAR - AR/R,) sin qAR, 

In the above-mentioned expressions it is to be noted 
that the squared quantities are always positive and 
that, since cos qAR ranges from - 1 to 1, the quantities 
E, and E, are also positive if S is positive. However, S 
is positive if U is positive. Therefore, in such a case (U 
positive), each of the above given moduli is, for all 
mesh sizes, less than unity. Hence, the finite difference 
equations (16)-(20) are stable for all mesh sizes as long 
as the downstream axial velocity is positive, i.e. as long 
as no flow reversals occur within the domain of 
solution. 

It is worth mentioning here that the left-hand side of 
equation (17) was given in [7] as Wzj+,/R,. Even 
though such a representation for W2/R at the grid 
point (i,j + 1) is exact and would not affect the 
previously mentioned method of solution, it does not, 
however, guarantee numerical stability. This is be- 
cause, in this case and after neglecting the 2nd-order 
terms of the perturbations, equation (22) would take 
the form 

.L(Z + AZ) = c,&(Z) Wi,j+ l/‘Wi,j, 

while the other four equations, which govern the 
behaviour of errors, would remain unchanged. Hence, 
in this case, one of the eigenvalues of the amplification 
matrix would become 9, = c,&,~+ ,/Wi,j while the 
other four eigenvalues remain the same as previously 
given. Since Wi,j+ ,/Wi,j is normally greater than unity 
for tangentially developing flows, hence Y, is not 
unconditionally guaranteed, in this case, to be less than 
unity in modulus and thus numerical stability may not 
be secured as was inaccurately stated in [7, 81. 

5. RESULTS AND DISCU!3!3lON 

The special case of Gr/Re = 0 (i.e. pure forced 
convection with constant physical properties) has been 
treated in [7,8] and it was stated in [8] that a laminar 
solution would not exist over the entire development 
length for values of the parameter Re*/Ta < 1. The 
present approximate representation of W2 at the grid 
point (i,j + 1) by the linearized expression Wi,jWi,,+, 
in the finite difference equation (17), rather than the 
exact representation W:j+l used in [7], has been 
successful in obtaining converged laminar numerical 
solutions over the entire development length at values 
of the parameter Re’/Ta < 1. However, at sufficiently 
low values of RelITa, and even though the condition 
for numerical stability (i.e. U is non-negative within the 
domain of solution) is satisfied, a laminar numerical 
solution could only be obtained up to a certain axial 
distance from the annulus entrance, after which diver- 
gence from the laminar solution occurs. The point at 
which the solution starts to diverge always moves 
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toward the annulus entrance as the value of the 
parameter Re*/Ta further decreases. Such a solution 
divergence appears as the radial velocity component 
starts to increase instead of decaying as in the laminar 
flow solution. Since the condition for numerical stabil- 
ity is satisfied, one may say that such a phenomenon 
(of a non-existent laminar solution which occurs after 

a certain axial length, at sufficiently low values of 
Re*/Ta) is not linked with a numerical instability but 

rather it is a physical instability. It is also important to 
mention that Schlichting [16] explained the physical 

reasons due which one “must not expect” laminar 
solutions to be available “for arbitrary large Rr,/u;, 

i.e. for sufficiently low values of Re*/Ta. 
On the other hand, the special case of Re*/Ta = x 

(i.e. stationary walls) has been treated in [13] and it 
was shown that, at large absolute values of Gr/Re, 
there exists a possibility of flow reversals near the 
heated boundary when the free convection opposes the 
forced flow (i.e. negative values of Gr/Re) while such a 
flow reversal may occur near the insulated wall if the 
free convection is aiding the forced flow (i.e. positive 
values of Gr/Re). This prediction can physically be 

attributed to the fact that, when the free convection 
aids the forced flow, the fluid accelerates near the 
heated boundary and, due to the continuity principle, 
decelerates near the opposite insulated wall, and vice 

versa when the free convection opposes the forced 
flow. It should be emphasized that such flow reversals 
would be expected to exist, at sufficiently large values 
of Gr/Re, regardless of the shape of the inlet velocity 
profile. However, the axial distance at which such a 
flow reversal may occur would be dependent on the 
shape of the inlet velocity profile. Also, it was shown in 
[13] that before the occurrence of a flow reversal, the 

velocity gradient normal to the wall, near which the 
flow reversal occurs, vanishes ((?U/dR I__,, = 0) and the 
critical distance Z,, at which the velocity gradient 
vanishes, was computed for each chosen value of the 
parameter Gr/Re. 

With a superimposed free convection (i.e. Gr/Re # 
0) and a rotatable inner cylinder (i.e. Re2/Ta # Y. ), the 
present computations have confirmed the pheno- 
menon of nonexistent laminar solutions, after certain 

axial distances from the entrance at sufficiently low 
values of the parameter Re*/Ta, even though the 
condition for numerical stability is satisfied. More- 

over, it has been found, as can be seen from Table 1, 
that either in case (I) with an opposing free convection 
(i.e. negative values of Gr/Re) or in case (0) with an 
aiding free convection (i.e. positive values of Gr/Re), 
increasing the absolute value of Gr/Re (i.e. increasing 
the free convection effect) causes an increase in the 
value of the parameter Re’/Ta at which such a 
phenomenon (i.e. divergence from laminar solution 
before the flow reaches full development, even though 
the condition for numerical stability is satisfied) oc- 
curs. This can physically be attributed to the fact that 
in both cases [i.e. case (I) with an opposing free 
convection or case (0) with an aiding free convection] 

the free convection causes a decrease in the axial 
velocity component near the rotating inner wall; a 
decrease in the axial velocity component is known to 
have a destabilizing effect [14] and hence transition 
from the laminar regime is expected to occur at low 
values of Ta (i.e., high values of Re*/Ta). Again, this 

latter prediction, beside the fact that the condition for 
numerical stability has not been violated until that 
cross-section at which the solution starts to diverge, 

may confirm that this phenomenon is not linked with a 
numerical instability but rather it is a physical 
instability. 

I$& of a rotating inner cylinder on the hydrodynamic 
development length Z, and the critical distance Z, 

Table 1 gives, for an annulus of N = 0.9 with Pr = 
0.7, the critical distance Z,, at which the gradient of the 
axial velocity component normal to the wall vanishes, 
and the hydrodynamic development length Z,, defined 
as the axial distance from the entrance required for the 

flow to become within + 0.5% axially fully developed 
[13]. It is clear from this table that, in the absence of 
free convection (i.e. Gr/Re = 0), the inner cylinder 
rotation increases the hydrodynamic development 
length significantly in comparison with the case offlow 
in a stationary annulus (i.e. Re2/Ta = x). This 

increase in the hydrodynamic development length is 
dependent on the value of the parameter Re2/Ta and 
could reach more than 1000°/O for Re’jTa = 0.2. This 
shows how the mechanism of axial velocity develop- 
ment becomes very slow due to the inner cylinder 
rotation in comparison with the stationary walls case. 
This prediction is in a qualitative agreement with the 
results of the integral momentum analysis of Astill and 
Chung [6] which have showed that the closing length 
of the two axial boundary layers in an annulus 
increases as the value of the parameter Re*/Ta 
decreases. 

With a superimposed free convection (i.e. Gr/Re # 
0), Table 1 shows that for a given value of Gr/Re the 
effect of the inner cylinder rotation on either the 
hydrodynamic development length or the critical 
distance Z,, if any, depends on whether the free 
convection is aiding or opposing the forced flow and 
on the thermal boundary conditions. With an aiding 
free convection (i.e. positive values of Gr/Re), increas- 
ing the inner cylinder rotational speed (i.e. decreasing 
the value of Rr*/Ta at a given value of Gr/Re) increases 
Z, and decreases Z, in case (I) and vice versa in case 
(0). On the other hand, if the free convection opposes 
the forced flow (i.e. negative values of Gr/Re), increas- 
ing the inner cylinder rotational speed decreases Z, 
and increases Z, in case (I) and vice versa in case (0). 
These effects could be attributed to the fact that the 
inner cylinder rotation has, in all cases, the effect of 
increasing the axial velocity component near the 
rotating inner cylinder [6,7] (i.e. the developing axial 
velocity profiles become more skewed inward as 
shown in Fig. 2). However, while the superimposed 
aiding and opposing free convections have a similar 
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Table 1. Critical distance Z, and the hydrodynamic development length Z, (N = 0.9, Pr = 0.7) 

Gr 

Thermal bound~y condition (0) 

Re2/Ta = ,x Re2/Ta = 10 Re2jTa = 1 Re2/Ta = 0.5 Re*/Ta = 0.3 Re’/Ta = 0.2 

- zq z,x zp z,x ZJ z,x ZJ z,x zpx z,x zq z,x 
Re lo4 lo2 lo4 lo2 lo4 lo2 lo4 lo2 lo4 lo2 lo4 10z 

-300 3.33 1.315 3.32 NI 3.25 NI 3.12 NI 3.00 NI 
-200 NFR 1.203 NFR 1.220 NFR 1.288 NFR 1.307 NFR 1.314 NFR 1.330 
-100 NFR 1.001 NFR 1.002 NFR 1.009 NFR 1.028 NFR 1.032 NFR 1.040 

0 NFR 0.059 NFR 0.105 NFR 0.480 NFR 0.570 NFR 0.600 NFR 0.610 
100 NFR 0.840 NFR 0.835 NFR 0.816 NFR 0.802 NFR 0.790 NFR 0.781 
200 NFR 1.042 NFR 1.038 NFR 1.010 NFR 1.002 NFR 1.000 NFR SD 
400 NFR 1.260 NFR 1.242 NFR 1.140 NFR 1.125 NFR SD 
500 NFR 1.332 NFR 1.327 NFR 1.264 NFR SD 
700 7.80 1.432 7.88 1.421 8.40 NI NFR SD 
800 6.80 1.481 6.80 NI 6.10 NI NFR SD 

Thermal boundary condition (I) 

-300 3.30 1.562 3.50 NI NFR SD 
-200 NFR 1.396 NFR 1.381 NFR 1.356 NFR 1.350 NFR SD 
-100 NFR 1.118 NFR 1.117 NFR 1.116 NFR 1.115 NFR 1.110 NFR 1.102 

100 NFR 0.878 NFR 0.900 NFR 0.993 NFR 1.019 NFR 1.020 NFR 1.026 
200 NFR 1.092 NFR I.135 NFR 1.220 NFR 1.252 NFR 1.258 NFR 1.263 
400 NFR 1.312 NFR 1.335 NFR 1.420 NFR 1.440 NFR 1.450 NFR 1.456 
500 NFR 1.387 NFR 1.407 NFR 1.476 NFR 1.490 NFR 1.500 NFR 1.510 
700 9.40 1.514 9.37 1.523 9.08 1.561 8.80 1.565 8.60 1.570 8.40 1.577 
% 6.80 7.66 1.566 NI 6.79 7.65 1.572 NI 6.78 7.60 1.600 Nl 6.75 7.58 NI NI 6.70 7.30 NI NI 

NFR = neither flow reversal nor zero velocity gradient normal to the wall occur. 
NI = numerical instability occurs before the Row reaches full development due to the presence of flow reversals within the 

domain of solution. 
SD = solution divergence occurs before the flow reaches full development, even though the condition for numerical stability 

is satisfied. 

effect in cases (I) and (0), respectively, they cause a corresponding isothermal developing profiles by de- 
decrease in the axial velocity component near the creasing the value of the parameter Re2/Ta. On the 
rotating inner cylinder in cases (0) and (I), respectively other hand, such a deviation decreases in either case (I) 
[13]. Thus, both the inner cylinder rotation and the with an opposing free convection or case (0) with an 
aiding free convection of case (I) or the opposing free aiding free convection by increasing the inner cylinder 
convection of case (0) have similar effects on the rotational speed. Hence, the axial distance required for 
developing axial velocity profiles. On the other hand, the axial velocity profiles to recover and approach the 
the aiding free convection of case (0) or the opposing fully developed isothermal velocity profile increases in 
free convection of case (I) counter acts the effect of the the former two cases and decreases in the latter two 
inner cylinder rotation on the developing axial velocity cases, but the critical distance Z,, if any, is affected in 
profiles. Therefore, for a given value of Gr/Rr and in a reversed manner. This is because the more is the 
either case (I) with an aiding free convection or case deviation of the developing axial velocity profiles from 
(0) with an opposing free convection, the deveIoping the corresponding developing isothermal velocity pro- 
axial velocity profites deviate increasingly from the files the more is the possibility of having a flow reversal 

1 

0.8 

FIG. 2. Effect of inner cylinder rotation on the developing axial velocity profiles, N = 0.9; Gr/Re = 0 
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and hence the shorter is the axial distance (from the 
entrance) at which such a flow reversal may occur. On 
the other hand, if there is no ff ow reversals, the more is 
the deviation (of the developing axial velocity profiles 
from the corresponding developing isothermal ve- 
locity profrIes) the longer is &e axial distance (from the 
entrance) required for such profiles to recover and 
approach the isothermal fully developed axial velocity 
profile. 

In the absence of free convection, it is known f&-7] 
that, provided the flow remains ~arnjnar and vortices 
are not generated, the rate of rotation of the inner 
cylinder has a slight effect on the developing tangential 
velocity profiles, and hence 6,. Xn the presence of a 
su~~rn~~d free convection, the present compu- 
tations have also confirmed this conclusion. In other 
words, at a given value ofGr/Re, the parameter Re’/Ta 
has a slight effect on the developing tangential velocity 
profiles, and hence 6,. To show such a slighjtt effect more 
clearly, values of i$, corresponding to some selected 
values ofthe ~a~arn~~er GPJRC. are presented in Table 2 
for an annulus of radius ratin OS9 at various axial 
positions for two values of the parameter W/Ta (0.Z 
and 10). 

On the other hand, for a given value of Ru’/Ta, thr: 
parameter Gr/Re and the thermal boundary cun- 
d&ions have sibilant effects on the deve~op~~~ 
tangentiai velocity profiles. and hence 4 Figures 3 and 
4 represent, for thermaf boundary conditions (1) and 
(0) respectively, the developing tangential velocity 
distribution W corresponding to a given value of the 
parameter Re’/Ta for various selected values of the 
parameter Gr/Re. However, in order to show the effect 
of the thcrmaf boundary co~djt~o~5 more clearly, the 
developing tangential velocity protiles given in Fig. 5 
are obtained by cross-plotting in Figs. 3 and 4. Figures 

6 and 7 represent, for a given value of the parameter 

Re’jTa, the developing dimensionless rangemial 
boundary iayer displacement thickness against the 
dimensionless axial distance for some selected values 
of the parameter Gr/Re. It is noticeable from these 
figures that, near the annufus entrance and until a 
certain point in the entry region, the su~r~mposed 
aiding and opposing free convections of cases (1) and 
(0) respectively delay the development of the tangen- 
tial velocity component in comparison with the c&se of 
pure forced convection (i.e. Gr/Re = 01, then further 
downstream this effect is reversed. Also, in either ease 
($1 with an opposing free co~vectjo~ or case 40) with 
an aiding free convection, the increase in the absolute 

FIG. 3. T~n~~~tial v&city dev~l~~~~~t for various vaftmof 
Gr/Re, iv = 0.9; Pr = 0.7; Re2/Ta = IO; case (I). 

Pure forced 

Case (0) Cxse (I) convection 

G#& = 100 GqJRe = - 100 Gr)Re = 100 G#k? = - lix) Gr/Re -- 0 
-_ e -.-.- 

Re2/Ta Re’/Ta Rez;iTG Re’/?-u Re’/Ta Re’/Trt Re’/Ta Re”JCa Re’iTa Re”/Ta 
z x I@ = IO = 02 = 10 = 0.2 = 10 = 0.2 = to = 0.2 = IO =0.x 

_ ____.-_--I, ~~-.*-~.- 

2 0.1815 0.1694 O.f681 0.1 SYY 0.1672 0.1589 0.1862 0.X719 0.1750 0.1650 
5 0.2620 0.2491 0.2332 0.2257 0.2342 0.2263 0.2646 0,251O 0.2474 0.237’1 

10 0.3379 0.3312 0.3118 O.3046 0.3133 oxm 0.3367 0.3309 0.3244 0.3175 
15 0.3839 0.3826 0.3695 0.3642 0.3712 0.3558 0.3822 0.38$8 tt.3722 0.3721 
28 8.4147 D.4172 0.4097 0.4078 0.41s 0.4096 0.4x% O.ii155 0.4128 a.4124 
30 0.4513 0.4565 0.456 E &4zl95 0.4571 0.4610 0.45oci ~*4~~ 0.4544 0.4582 
45 0.4751 0.4794 0.4827 0.4879 0.4829 0.4882 0.4746 0,4733 0.4789 0.4838 
90 0.4891 0.4895 0.4919 0.4925 0.49 17 0.4922 0.4888 0.4893 0.4904 a.4908 

240 0.4908 0.4908 0.4908 0.4908 0.4908 0.4908 0.4908 0.4908 0.4908 0.4908 
-m ~*_~--__ .~__ .._.._- _ ._“~._______ -l”-w 
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value of the parameter Gr/Re causes an increase in the 
rate of tangential velocity development until a certain 
axial distance from the entrance is reached, after which 
this effect is reversed until the flow becomes fully 
developed. 

In order to interpret the effects of a superimposed 
free convection on the development of the tangential 
velocity component, recourse to the mechanisms of 
transporting the tangential momentum in the entry 
region is necessary. The tangential momentum is 
transported in the entry region by two mechan- 
isms; firstly, by the transport created by the radial 
velocity component and, secondly, by the molecular 
diffusion due to the viscosity of the fluid. As can be 
seen from Fig. 8, for an aiding free convection with 

FIG. 4. Tangential velocity development for various values of 
Gr/Re. N = 0.9; Pr = 0.7; Re’/Ta = 10; case (0). 

FIG. 6. Tangential boundary layer displacement thickness 
against axial distance. N = 0.9; Pr = 0.7; Re’/Ta = 10; 

case (I). 

thermal boundary conditions (0) the radial velocity, 
near the annulus entrance and until a certain axial 
distance, mainly transfers fluid from regions 
close to the rotating inner cylinder to regions far 
from it, thus causing a transport of tangential 
momentum from fluid near the inner rotating wall to 
the core fluid. However, far away from the entrance, 
the radial velocity mainly transfers fluid of low tangen- 
tial momentum from regions close to the stationary 
outer cylinder to the core fluid. On the other hand, for 
an opposing free convection under thermal boundary 
conditions (0), the radial velocity component acts in a 
different manner, i.e. near the annulus entrance, it 

0.8 

FIG. 5. Effect of thermal boundary conditions on the developing tangential velocity profiles. N = 0.9; Pr = 
0.7; Re’ITa = 10; GrlRe = 500. 
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Ok----e ’ ’ ’ ’ ’ ’ ’ ’ ’ 20 
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30 

FIG. 7. Effect of superimposed free convection on the dimen- 
sionless tangential boundary layer displacement thickness. 

N = 0.9; Pr = 0.7; Re’/Tu = 10; case (0). 

mainly transfers fluid from regions close to the sta- 
tionary outer wall but far downstream it mainly 
transfers fluid, having high tangential momentum, 
from regions close to the inner rotating wall. 

Under thermal boundary conditions (I), the radial 
velocity component acts, for a given value of the 
parameter GrjRe, in a reversed manner compared with 
that in case (0). To clarify this point, the radial 
velocity profiles, at a given cross-section in the early 
stages of development, are drawn in Fig. 9 for various 
selected values of the parameter Gr/Re. It is clear from 
this figure that for positive values of GrjRe (i.e. aiding 
free convection) the radial velocity component is 
negative, i.e. its direction is opposite to that of the 
radial coordinate. However, with negative values of 
Gr/Re, the radial velocity is positive, i.e. its direction is 

from the inner rotating wall to the outer stationary 
wall. Indeed, in the last stages of development (i.e. at 
large values of 2) the directions of the radial velocity 
component are opposite to those shown in Fig. 9. 

According to Astill’s empirical stability criterion for 
tangentially developing flows [2,3], the first instability 

disturbance appears if the Taylor number based 
on the tangential boundary layer displa~ment 
thickness exceeds a certain critical value. combining 
this criterion with the present results for Sz, shown 
in Figs. 6 and 7, implies that: (1) under thermal 
conditions (I), a superimposed aiding/opposing 
free convection tends to stabilize/destabilize a 
tangentially developing flow in the early stages of 
development and vice versa in the last stages of 
development, (2) under thermal boundary conditions 
(0), a superimposed opposing/aiding free convection 
respectively stabilizes/destabilizes a tangentially de- 
veloping laminar flow in the early stages of develop- 
ment but in the last stages of development the reverse is 
true. 

&@ct of inner cylinder rotation on laminar mixed 

convection heat transfer parameters 
Table 3 gives the local Nusselt number and the 

mixing cup temperature for Pr = 0.7 at various axial 
positions from the entrance for an annulus of radius 
ratio 0.9 under thermal boundary conditions (I) and 
(0). Under each thermal boundary condition the 
results are presented, at a selected value of the 
parameter Gr/Re, for Re’/Ta = x. (i.e. the stationary 
walls case) and Re’/Ta = 0.2 (i.e. the lowest value at 
which a converged laminar solution could be obtained 
over the entire development length for the selected 
value of Gr/Re). In general and as can be seen from 
these results, the inner cylinder rotation causes, for a 
given value of Gr/Re, an increase in the local heat 
transfer coefficient and the mixing cup temperature, if 
the inner wall is the heated boundary and vice versa if 
the outer wall is the heated boundary. These effects are 
attributed to the very same reasons mentioned in (IS], 
i.e. in the entrance region, the inner cylinder rotation 
causes the axial velocity boundary layer developing on 
the outer wall to be thickened while the inner wall axial 

-I__- Grl Red00 
----- Gr/Re:-100 

FIG. 8. Effect of free convection on the development of the radial velocity component. N = 0.9; Re’/Ta = 
10 ; case (0). 
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FIG. 9. Elfect of the parameter Gr/Re on the radial velocity profiles at Z = 4 x 10e4. N = 0.9; Pr = 0.7; 
Re*/Ta = 10; case (I). 

Table 3. Effect of the parameter Re’/Ta on the local Nusselt number and the dimensionless mixing cup 
temperature, N = 0.9, Pr = 0.7 

Case (I) with Gr/Re = 500 Case (0) with Gr/Re = -200 

NU T, NU 7, 

Re’JTa Re’ITa Re2/Ta Re2/Ta Re2/Ta Re’/Ta Re2/Ta Re’JTa 
zx103 =% = 0.2 =x = 0.2 = r/_ = 0.2 = jc = 0.2 

0.05 12.446 12.952 0.0644 0.0651 8.405 8.214 0.0824 0.0809 
0.10 10.112 10.450 0.0988 0.1006 6.788 6.516 0.1083 0.1056 
0.30 7.978 8.158 0.1990 0.2028 4.790 4.585 0.1771 0.1740 
1.50 6.602 6.991 0.5503 0.5611 4.255 3.998 0.4387 0.4254 
4.50 5.363 5.376 0.8630 0.8700 4.564 4.519 0.7918 0.7795 

11.50 4.977 4.976 0.9862 0.9867 4.778 4.776 0.9808 0.978 1 

velocity boundary layer diminishes. However, as can 

be seen from Table 3, the maximum deviation between 
the local heat transfer parameters of the stationary 
walls case and those corresponding to the case of 
Re2/Ta = 0.2 is about 6%. Therefore, the results 
presented in [13] for the stationary walls case may be 
used, without significant errors, for any other value of 
the parameter Re’/Ta, provided that the flow remains 
laminar and the critical distance Z,, if any, is not 
reached. 

1. 

2. 

3. 

4. 

5. 

REFERENCES 10. 

G. I. Taylor, Stability of a viscous liquid contained 
between two rotating cylinders, Phi/. Trans. R. Sot. Ser. 
A, 223,289-343 (1923). 
K. N. Astill, Modes of adiabatic flow in the entrance 
region of an annulus with an inner rotating cylinder, 
Ph.D. Dissertation, Massachusetts Institute of Tech- 
nology (1961). 
K. N. Astill, Studies of the developing flow between 
concentric cylinders with the inner cylinder rotating, J. 
Hear Transfer 86, 383-392 (1964). 
K. N. Astill, J. T. Ganely and B. W. Martin, The 
developing tangential velocity profile for axial flow in an 
annulus with a rotating inner cylinder, Proc. R. Sot. Land. 
307A, 55-69 (1968). 
B. W. Martin and A. Payne, Tangential flow development 
for laminar axial flow in an annulus with a rotating inner 
cylinder, Proc. R. Sot. Land. 328A, 123-141 (1972). 

11 

12. 

13. 

14. 

15. 

16. 

6. K. C. Chung, The momentum integral solution of the 
developing flow in the entrance of an annulus with a 
rotating inner cylinder M.Sc. dissertation, Tufts Uni- 
versity, U.S.A. (1973). 

7. J. E. R. Coney and M. A. I. El-Shaarawi, A contribution 
to the numerical solution of developing laminar flow in 
the entrance region of concentric annuli with rotating 
inner walls, J. Fluids Engng 96, 333-340 (1974). 

8. J. E. R. Conev and M. A. I. El-Shaarawi. Laminar heat 

9 

transfer in the entrance region of concentric annuli with 
rotating inner walls, J. Heat Transfer %,56&562 (1974). 
K. M. Becker and J. Kaye, The influence of a radial 
temperature gradient on the instability of fluid flow in an 
annulus with an inner rotating cylinder, J. Heat Transfer 
84, 106-110 (1962). 
G. F. Scheele and T. J. Hanratty, ElTect of natural 
convection on stability of flow in a vertical pipe, J. FIuid 
Mech. 14, 244-256 (1962). 
L. Lapidus, Digital Computation for Chemical Engineers, 
PP. 254-255. McGraw-Hill (1962). 
B. Camahan, H. A. Luther and J. 0. Wilkes, Applied 
Numerical Methods, pp. 449475. John Wiley (1969). 
M. A. I. El-Shaarawi and A. Sarhan, Free convection 
effects on the developing laminar flow in vertical con- 
centric annuli, J. Heat Transfer 102, 617-622 (1980). 
K. C. Chung and K. N. Astill, Hydrodynamic instability 
of viscous flow between rotating coaxial cylinders with 
fully developed axial flow, J. F&d Mech. 81, 64-655 
(1977). 
J. R. Bodoia, Ph.D. thesis, Carnegie Institute of Tech- 
nology, July 1959. 
H. Schlichting, Laminar flow about a rotating body of 
revolution, NACA TM 1415 (1956). 



186 M. A. I. EL-SHAARAWI and A. SARHAN 

CONVECTION MIXTE LAMINAIRE A L’ENTREE D’UN ESPACE ANNULAIRE VERTICAL 
AVEC CYLINDRE INTERIEUR TOURNANT 

R&umb-On presente des rCsultats numiriques d’une mbthode aux diffbrences finies pour l’icoulement de 
couche limite avec convection mixte laminaire dans un espace annulaire vertical avec cylindre inteme 

toumant. On ttudie I’effet d’une convection libre favorable ou antagoniste sur les profils de vitesse 
tangentielle, pour un fluide avec Pr = 0,7, un espace g rapport de rayonsbgal B 0,9 et pour lesdomaines - 300 
2 Gr/Re 5 800 et 0,2 5 Re’/Ta < 10. On considtre aussi les effets de la rotation du cylindre interieur sur la 

longueur de d&veloppement hydrodynamique, sur la distance critique B laquelle le gradient de vitesse axial 

normal B la paroi s’annule, et sur les parametres du transfert thermique. 

UBERLAGERTE ERzwu~cxNE UND FREIE KONVEKTION IM EINTRITTSBEREICH 
EINER VERTIKALEN RINGSPALTSTRC)MUNG MIT ROTIERENDEM INNEREN ZYLINDER 

Zusammenfassung-Es wird die numerische Liisung mit Hilfe eines Differenzenverfahrens fiir eine 
ausgebildete uberlagerung von erzwungener und freier laminarer Grenzschichtstramung in einem 
senkrechten Ringspah mit rotierendem Innenzylinder beschrieben. Der EinfluB einer iiberlagerten 
verstsjkenden oder hemmenden freien Konvektion im ausgebildeten Geschwindigkeitsprofil wurde fiir ein 
Fluid mit Pr = 47 in einem Ringspalt mit dem Radienverhlltnis 0,9 i&x einen Bereich von 
- 300 s Gr/Re 5 800 und 0.2 I Re’/Ta 5 10 untersucht. Die Einfliisse eines rotierenden inneren Zylinders 
auf die hydraulische Anlaufllnge, auf den kritischen Abstand, bei welchem der Gradient der 

Axialgeschwindigkeit senkrecht zur Wand verschwindet, sowie auf die Wtirmeiibertragungs-Parameter 
wurden untersucht. 

CMEUIAHHA5I JIAMMHAPHAII KOHBEKL(MIl BO BXOAHOM YYACTKE 
BEPTMKAJIbHO~O KOJIbqEBOI-0 KAHAJIA C BPALI(AIOlUMMCR BHYTPEHHMM 

~IIJIMHflPOM 

AHHOTBWR - npenCTaBJ,eHbt ‘IA‘XeHHble pe3ynbTaTbI KOHe’iHO-pa3HOCTHbIM MeTOflOM L”IR pa3BHBa- 

FOmei%CS CMemaHHOii JIaMRHapHOfi KOHBeKUWA a nOrpaHH’IHOM CnOe B BepWKanbHOM KOHueHTpH- 

gecKoM KonbueBoM KaHane c Bpamammshlca BHYT~~HHBM UH~~HA~OM. kiccnenyewn BnmrHHe coa- 

naL,alomek C BblHyXLIeHHbIM ABRTeHHeM rtnW npOTHBOnOnOXHOfi n0 HanpaBneHWO KOHBCKUWR Ha 

pa3ertBaromeecn npo+inu -raHreHuHanbHoii cKopocm nnlsrn ~W~KOCTII c Pr = 0.7 a KonbneBoM KaHane 

c OTHOmeHHeM panaycoB 0,9 B naanasose -3otlS Gr/Re 5 800 H 0,2 5 Re’/Tu c: IO. PaccMaTpeBa- 

eTCII BnAIIHHe BpameHHa BHyTpCHHerO W.“HHnpa Ha LUlHHy rHnpOL,HHaMWIeCKOrO Ha’IanbHOrO yqaCTKa, 

a TaKme KpHTrcqecKoe paccTonHse, Ha KOTOP~M rpanaee-r 0ceBoti CK~~~CTA wcye3aeT. II napaMeTpb1 

-rennoobMeHa. 


